アプリオンは、世界のアプリランキングや口コミから、おすすめアプリをまとめている人気アプリ探しサイトです。

AWS Machine Learning Exam Prep [iPad]

AWS Machine Learning Exam Prepのおすすめ画像1
AWS Machine Learning Exam Prepのおすすめ画像2
AWS Machine Learning Exam Prepのおすすめ画像3
AWS Machine Learning Exam Prepのおすすめ画像4
AWS Machine Learning Exam Prepのおすすめ画像5
AWS Machine Learning Exam Prepのおすすめ画像6
AWS Machine Learning Exam Prepのおすすめ画像7
AWS Machine Learning Exam Prepのおすすめ画像8
AWS Machine Learning Exam Prepのおすすめ画像9
AWS Machine Learning Exam Prepのおすすめ画像10
<
>

DjamgaTech Corpのエデュケーションアプリ

「AWS Machine Learning Exam Prep」は、DjamgaTech Corpが配信するエデュケーションアプリです。

教育 開発ツール

このアプリの話題とニュース

  • スコアアタックや実績・トロフィーに対応しています。


  • 2022年3月3日(木)にiPhoneとiPad両対応のユニバーサルアプリとしてリリース!


最新更新情報

version1.0が、2022年3月3日(木)にリリース

使い方や遊び方

Use this App to learn about Machine Learning on AWS and prepare for the AWS Machine Learning Specialty Certification MLS-C01.
Earning AWS Certified Machine Learning Specialty validates expertise in building, training, tuning, and deploying machine learning (ML) models on AWS.



The App provides hundreds of quizzes and practice exam about:
- Machine Learning Operation on AWS
- Modelling
- Data Engineering
- Computer Vision,
- Exploratory Data Analysis,
- ML implementation & Operations
- Machine Learning Basics Questions and Answers
- Machine Learning Advanced Questions and Answers
- Scorecard
- Countdown timer
- Machine Learning Cheat Sheets
- Machine Learning Interview Questions and Answers
- Machine Learning Latest News



The App covers Machine Learning Basics and Advanced topics including: NLP, Computer Vision, Python, linear regression, logistic regression, Sampling, dataset, statistical interaction, selection bias, non-Gaussian distribution, bias-variance trade-off, Normal Distribution, correlation and covariance, Point Estimates and Confidence Interval, A/B Testing, p-value, statistical power of sensitivity, over-fitting and under-fitting, regularization, Law of Large Numbers, Confounding Variables, Survivorship Bias, univariate, bivariate and multivariate, Resampling, ROC curve, TF/IDF vectorization, Cluster Sampling, etc.



Domain 1: Data Engineering
Create data repositories for machine learning.
Identify data sources (e.g., content and location, primary sources such as user data)
Determine storage mediums (e.g., DB, Data Lake, S3, EFS, EBS)
Identify and implement a data ingestion solution.
Data job styles/types (batch load, streaming)
Data ingestion pipelines (Batch-based ML workloads and streaming-based ML workloads), etc.



Domain 2: Exploratory Data Analysis
Sanitize and prepare data for modeling.
Perform feature engineering.
Analyze and visualize data for machine learning.



Domain 3: Modeling
Frame business problems as machine learning problems.
Select the appropriate model(s) for a given machine learning problem.
Train machine learning models.
Perform hyperparameter optimization.
Evaluate machine learning models.



Domain 4: Machine Learning Implementation and Operations
Build machine learning solutions for performance, availability, scalability, resiliency, and fault
tolerance.
Recommend and implement the appropriate machine learning services and features for a given
problem.
Apply basic AWS security practices to machine learning solutions.
Deploy and operationalize machine learning solutions.



Machine Learning Services covered:
Amazon Comprehend
AWS Deep Learning AMIs (DLAMI)
AWS DeepLens
Amazon Forecast
Amazon Fraud Detector
Amazon Lex
Amazon Polly
Amazon Rekognition
Amazon SageMaker
Amazon Textract
Amazon Transcribe
Amazon Translate



Other Services and topics covered are:
Ingestion/Collection
Processing/ETL
Data analysis/visualization
Model training
Model deployment/inference
Operational
AWS ML application services
Language relevant to ML (for example, Python, Java, Scala, R, SQL)
Notebooks and integrated development environments (IDEs),
S3, SageMaker, Kinesis, Lake Formation, Athena, Kibana, Redshift, Textract, EMR, Glue, SageMaker, CSV, JSON, IMG, parquet or databases, Amazon Athena
Amazon EC2, Amazon Elastic Container Registry (Amazon ECR), Amazon Elastic Container Service, Amazon Elastic Kubernetes Service , Amazon Redshift



Important: To succeed with the real exam, do not memorize the answers in this app. It is very important that you understand why a question is right or wrong and the concepts behind it by carefully reading the reference documents in the answers.



Note and disclaimer: We are not affiliated with Microsoft or Azure or Google or Amazon. The questions are put together based on the certification study guide and materials available online. The questions in this app should help you pass the exam but it is not guaranteed. We are not responsible for any exam you did not pass.

最新ストアランキングと月間ランキング推移

AWS Machine Learning Exam PrepのiPadアプリランキングや、利用者のリアルな声や国内や海外のSNSやインターネットでの人気状況を分析しています。

基本情報

仕様・スペック

対応OS
11.0 以降
容量
13.2 M
推奨年齢
全年齢
アプリ内課金
なし
更新日
2022/03/03

リリース日
2022/03/03

集客動向・アクティブユーザー分析

オーガニック流入

 

アクティブ率

 

※この結果はAWS Machine Learning Exam Prepのユーザー解析データに基づいています。

利用者の属性・世代

アプリ解析デモグラフィックデータ(男女年代比率52%)

わおっ!閉店ガラガラッ!

デモグラフィックデータを元にユーザー層の性別や年齢分布などを考慮して推定しています。

ネット話題指数

開発会社の配信タイトル

このアプリと同一カテゴリのランキング

浜辺美波 写真集「voyage」
浜辺美波
amazon

DjamgaTech Corp のアプリ

DjamgaTech Corp の配信アプリ >

新着おすすめアプリ

新着おすすめアプリ >

注目まとめ

iPadアプリまとめ >