アプリオンは、世界のアプリランキングや口コミから、おすすめアプリをまとめている人気アプリ探しサイトです。

ML Image Identifier Lite [iPad]

ML Image Identifier Liteのおすすめ画像1
ML Image Identifier Liteのおすすめ画像2
ML Image Identifier Liteのおすすめ画像3
ML Image Identifier Liteのおすすめ画像4
ML Image Identifier Liteのおすすめ画像5
ML Image Identifier Liteのおすすめ画像6
<
>

HullBreach Studios Ltd.のカメラ・写真アプリ

「ML Image Identifier Lite」は、HullBreach Studios Ltd.が配信するカメラ・写真アプリです。

写真/ビデオ 教育

このアプリの話題とニュース

  • 新バージョン1.3.0が配信開始。新機能や改善アップデートがされています。


  • 2018年12月11日(火)にiPhoneとiPad両対応のユニバーサルアプリとしてリリース!


最新更新情報

version1.3.0が、2019年9月24日(火)にリリース

* Support for dark mode
* Added optical character-recognition (OCR) in text-recognition mode

使い方や遊び方

FEATURES:



ML Image Identifier is an educational app that allows your iOS device to identify images in real-time, as you move the camera around your environment. It can scan for 3 categories of images ("Objects", "Cars", and "Food") and recognize "Text" (character boxes, OCR) and "Faces" (feature landmarks).



The app automatically throttles the image processing to work on any device running iOS 12, though it may be sluggish on older devices. Devices running iOS 13 additionally have optical character-recognition (OCR) in "Text" mode.



For the categorized images, the app displays the top-5 predicted matches, based on the neural networks' confidence levels as percentages.



BACKGROUND:



Once merely a subject of science-fiction, machine learning has permeated our lives in recent decades. We see it in numerous uses, such as handwriting recognition, facial recognition, image tagging, AI in games, targeted advertisements, predictive typing, and many automated tasks. Social networks are free because the data (i.e. text, images, survey responses, etc.) you provide can be valuable for numerous purposes. In short: Knowledge is power.



With the release of iOS 11, Apple brought machine learning to the masses with CoreML, making it possible to run neural networks and other ML-related tools via hardware acceleration on any iOS device.



This app is a demonstration of some possibilities - and some deficiencies - of machine learning. Modeling a neural network is only one part of the task. For a ML model to work, it must be fed massive amounts of test data (similarly to how it takes a living creature numerous stimuli to learn). Good test data can yield good results; poor test data can yield poor results. Sometimes, biases of those creating the tests can come into play, since they may unknowingly weigh certain test values over others.



SPECIFICS:



ML Image Identifier makes use of 3 ML models (all MIT- or Apache- licensed) and Apple's own Vision framework to serve as examples:



"MobileNet" - This scans general objects. It works fairly well with household items. It cannot identify people. This ML model is an example of fairly high-quality results in image recognition and is much more compact than similar ML models that can be as large as 500MB.



"CarRecognition" - This scans for makes and models of vehicles. It is very hit-or-miss and seems to heavily match automobiles from specific regions of the world. Most matches are the right body type but wrong make. This ML model is an example of mixed results in image recognition.



"Food101" - This scans for prepared foods. It rarely works with general food items and seems to focus on foods that most people will not have in their houses, such as caviar and lobster. It also returns many false-positives for desserts. This ML model is an example of poor results in image recognition when used outside of very specific cases.



The text-recognition mode looks for all potential text in view and highlights the words and individual characters in those words for easy viewing. It also supports OCR on iOS13.



The facial-recognition mode looks for all potential human or human-like faces. Of those found, the app highlights the facial landmarks, such as eyes, nose, jawline, etc. This mode in particular works better on a newer device at a usable framerate, due to the hardware required for real-time image processing.



If you enjoy this app, please consider ad-free version.



If you enjoy the facial-recognition, consider HullBreach Studios' game "Exprestive", which is also available in the App Store.

最新ストアランキングと月間ランキング推移

ML Image Identifier LiteのiPadアプリランキングや、利用者のリアルな声や国内や海外のSNSやインターネットでの人気状況を分析しています。

基本情報

仕様・スペック

対応OS
12.2 以降
容量
133 M
推奨年齢
全年齢
アプリ内課金
なし
更新日
2019/09/24

リリース日
2018/12/11

集客動向・アクティブユーザー分析

オーガニック流入

 

アクティブ率

 

※この結果はML Image Identifier Liteのユーザー解析データに基づいています。

利用者の属性・世代

アプリ解析デモグラフィックデータ(男女年代比率52%)

気合だっ!気合だっ!気合だーーー!!!

デモグラフィックデータを元にユーザー層の性別や年齢分布などを考慮して推定しています。

ネット話題指数

開発会社の配信タイトル

このアプリと同一カテゴリのランキング

ケロリン桶
ハインツコーポレーション
amazon

HullBreach Studios Ltd. のアプリ

HullBreach Studios Ltd. の配信アプリ >

新着おすすめアプリ

新着おすすめアプリ >

注目まとめ

iPadアプリまとめ >